Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618249

RESUMO

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

2.
Front Bioeng Biotechnol ; 12: 1329712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515621

RESUMO

The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.

3.
J Chem Neuroanat ; : 102413, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38492895

RESUMO

Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.

4.
Biochem Biophys Res Commun ; 707: 149513, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38508051

RESUMO

Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.


Assuntos
Neoplasias , Receptores Purinérgicos P2X7 , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais
6.
Purinergic Signal ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470513

RESUMO

Studies have confirmed that P2 purinergic receptors (P2X receptors and P2Y receptors) expressed in gastric cancer (GC) cells and GC tissues and correlates with their function. Endogenous nucleotides including ATP, ADP, UTP, and UDP, as P2 purinergic receptors activators, participate in P2 purinergic signal transduction pathway. These activated P2 purinergic receptors regulate the progression of GC mainly by mediating ion channels and intracellular signal cascades. It is worth noting that there is a difference in the expression of P2 purinergic receptors in GC, which may play different roles in the progression of GC as a tumor promoting factor or a tumor suppressor factor. Among them, P2 × 7, P2Y2 and P2Y6 receptors have certain clinical significance in patients with GC and may be used as biological molecular markers for the prediction of patients with GC. Therefore, in this paper, we discuss the functional role of nucleotide / P2 purinergic receptors signal axis in regulating the progression of GC and that these P2 purinergic receptors may be used as potential molecular targets for the prevention and treatment of GC.

7.
J Transl Med ; 22(1): 261, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461333

RESUMO

BACKGROUND: The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS: A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS: A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS: The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.


Assuntos
60482 , Traumatismo por Reperfusão , Humanos , Fosfatidilinositol 3-Quinases , Proteômica , Hipóxia
8.
Eur J Pharmacol ; 966: 176346, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38246329

RESUMO

Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Bulbo Olfatório , Bainha de Mielina , Neurônios , Transplante de Células/métodos , Regeneração Nervosa , Neuroglia
9.
Eur J Pharmacol ; 963: 176238, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072039

RESUMO

Spinal cord injury (SCI) can lead to severe motor, sensory and autonomic nervous dysfunction, cause serious psychosomatic injury to patients. There is no effective treatment for SCI at present. In recent years, exciting evidence has been obtained in the application of cell-based therapy in basic research. These studies have revealed the fact that cells transplanted into the host can exert the pharmacological properties of treating and repairing SCI. Olfactory ensheathing cells (OECs) are a kind of special glial cells. The application value of OECs in the study of SCI lies in their unique biological characteristics, that is, they can survive and renew for life, give full play to neuroprotection, immune regulation, promoting axonal regeneration and myelination formation. The function of producing secretory group and improving microenvironment. This provides an irreplaceable treatment strategy for the repair of SCI. At present, some researchers have explored the possibility of treatment of OECs in clinical trials of SCI. Although OECs transplantation shows excellent safety and effectiveness in animal models, there is still lack of sufficient evidence to prove the effectiveness of their clinical application in clinical trials. There has been an obvious stagnation in the transformation of OECs transplantation into routine clinical practice, and clinical trials of cell therapy in this field are still facing major challenges and many problems that need to be solved. Therefore, this paper summarized and analyzed the clinical trials of OECs transplantation in the treatment of SCI, and discussed the problems and challenges of OECs transplantation in clinical trials.


Assuntos
Traumatismos da Medula Espinal , Animais , Humanos , Traumatismos da Medula Espinal/terapia , Transplante de Células , Neuroglia , Bulbo Olfatório , Regeneração Nervosa , Medula Espinal
10.
Purinergic Signal ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153612

RESUMO

More and more studies have revealed that P2 purinergic receptors play a key role in the progression of colorectal cancer (CRC). P2X and P2Y purinergic receptors can be used as promoters and regulators of CRC and play a dual role in the progression of CRC. CRC microenvironment is rich in ATP and its cleavage products (ADP, AMP, Ado), which act as activators of P2X and P2Y purinergic receptors. The activation of P2X and P2Y purinergic receptors regulates the progression of CRC mainly by regulating the function of immune cells and mediating different signal pathways. In this paper, we focus on the specific mechanisms and functional roles of P2X7, P2Y12, and P2Y2 receptors in the growth and progression of CRC. The antagonistic effects of these selective antagonists of P2X purinergic receptors on the growth, invasion, and metastasis of CRC were further discussed. Moreover, different studies have reported that P2X7 receptor can be used as an effective predictor of patients with CRC. All these indicate that P2 purinergic receptors are a key regulator of CRC. Therefore, antagonizing P2 purinergic receptors may be an innovative treatment for CRC.

11.
Front Immunol ; 14: 1280186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915589

RESUMO

Neurological diseases are destructive, mainly characterized by the failure of endogenous repair, the inability to recover tissue damage, resulting in the increasing loss of cognitive and physical function. Although some clinical drugs can alleviate the progression of these diseases, but they lack therapeutic effect in repairing tissue injury and rebuilding neurological function. More and more studies have shown that cell therapy has made good achievements in the application of nerve injury. Olfactory ensheathing cells (OECs) are a special type of glial cells, which have been proved to play an important role as an alternative therapy for neurological diseases, opening up a new way for the treatment of neurological problems. The functional mechanisms of OECs in the treatment of neurological diseases include neuroprotection, immune regulation, axon regeneration, improvement of nerve injury microenvironment and myelin regeneration, which also include secreted bioactive factors. Therefore, it is of great significance to better understand the mechanism of OECs promoting functional improvement, and to recognize the implementation of these treatments and the effective simulation of nerve injury disorders. In this review, we discuss the function of OECs and their application value in the treatment of neurological diseases, and position OECs as a potential candidate strategy for the treatment of nervous system diseases.


Assuntos
Doenças Neurodegenerativas , Traumatismos dos Nervos Periféricos , Humanos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Bulbo Olfatório
12.
Eur J Med Chem ; 261: 115877, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37857146

RESUMO

Large amounts of adenosine triphosphate (ATP), a natural P2X7 receptor activator, are released during colorectal carcinogenesis. P2X7 receptor activation regulates the activity of colorectal cancer (CRC) cells by mediating intracellular signal transduction. Importantly, the opening and activation of membrane pores of P2X7 receptor are different, which can play a dual role in promoting or inhibiting the progression of CRC. These can also depend on P2X7 receptor to regulate the activities of immune cells in the microenvironment, play the functions of immune regulation, immune escape and immune monitoring. While the use of P2X7 receptor antagonists (such as BBG, A438079 and A740003) can play a certain inhibitory pharmacological role on the activity of CRC. Therefore, in this paper, the mechanism and immunomodulatory function of P2X7 receptor involved in the progression of CRC were discussed. Moreover, we discussed the effect of antagonizing the activity of P2X7 receptor on the progression of CRC. So P2X7 receptor may be a new pharmacological molecular target for the treatment of CRC.


Assuntos
Trifosfato de Adenosina , Neoplasias Colorretais , Humanos , Trifosfato de Adenosina/farmacologia , Receptores Purinérgicos P2X7 , Canais Iônicos , Transdução de Sinais , Antagonistas do Receptor Purinérgico P2X/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
13.
Front Oncol ; 13: 1239962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681019

RESUMO

Background: Resection of a giant retroperitoneal liposarcoma is difficult and technically demanding, especially for large retroperitoneal tumors accompanied by a diaphragmatic hernia. Technically, the open abdominal approach can be time-consuming and difficult to perform, with possible intraoperative complications and other factors bringing psychological and physical difficulties to the patient. This study reports a safe and feasible approach for the complete resection of a large retroperitoneal tumor complicated by a diaphragmatic hernia. Methods: A 58-year-old male patient with persistent upper abdominal pain and distension was treated at a local hospital on 4 July 2022. Computed tomography showed a mixed-density mass on the right retroperitoneum, and liposarcoma was considered. On 6 July 2022, the patient was transferred to our hospital for further treatment. Computed tomography showed a mass with low-density fatty shadow in the right adrenal region. The boundary with the right adrenal gland was unclear. The mass was 102 mm × 74 mm, and the right lobe of the liver was compressed. Insufficiency of the right middle lobe of the liver was seen due to a right diaphragmatic hernia and left mediastinal deviation. We considered the traditional approach for tumor resection via laparotomy, but we opted to perform a comprehensive evaluation first. The tumor was close to the back of the right kidney and liver, causing the diaphragm to rise because of its proximity to these organs. Exposing the tumor through laparotomy would be difficult, making it challenging to remove. The patient had a diaphragmatic hernia and moderate pulmonary dysfunction; therefore, we decided to enter the abdomen through a thoracotomy of the ninth rib. Results: Using our technique, the tumor was easily visualized and completely removed in approximately 30 min. The intraoperative blood loss was 100 ml, and no postoperative bleeding, pneumothorax, intestinal fistula, infection, or other complications occurred. Conclusion: The transthoracic approach may be a safer and more feasible resection method than the traditional open approach for patients with giant retroperitoneal liposarcoma with a diaphragmatic hernia.

14.
J Chem Neuroanat ; 133: 102327, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37634701

RESUMO

Neuropathic pain is a common symptom experienced by most clinical diseases at different levels, and its treatment has always been a clinical difficulty. Therefore, it is particularly important to explore new and effective treatment methods. The role of olfactory ensheathing cells (OECs) in nerve injury and pain is recognized by different studies. Our previous study found that transplantation of OECs alleviated hyperalgesia in rats. However, single-cell transplantation lacks medium adhesion and support, and exerts limited analgesic effect. Therefore, on the basis of the previous study, this study investigated the effect of pain relief by co-transplanting OECs with chitosan (CS) (a biological tissue engineering material, as OECs were transplanted into the host medium) to the injured sciatic nerve. The results showed that the pain threshold of sciatic nerve injury of rats was significantly reduced, and the expression level of P2×4 receptor in the spinal cord was significantly increased. While olfactory ensheathing cells combined with chitosan (OECs+CS) transplantation could significantly relieve pain, and the analgesic effect was stronger than that of OECs transplantation alone. OECs+CS transplantation promoted the formation of sciatic nerve remyelination, improved the changes of demyelination, and promoted the repair of sciatic nerve injury more significantly. In addition, the effect of OECs+CS to down-regulate the expression of P2×4 receptor was significantly stronger than that of OECs transplantation, and exerted a better analgesic effect. These data reveal that OECs+CS have a better analgesic effect in relieving neuropathic pain induced by sciatic nerve injury, and provide a new therapeutic strategy for pain treatment.


Assuntos
Quitosana , Neuralgia , Neuropatia Ciática , Traumatismos da Medula Espinal , Ratos , Animais , Materiais Biocompatíveis/metabolismo , Ratos Sprague-Dawley , Quitosana/farmacologia , Quitosana/uso terapêutico , Quitosana/metabolismo , Traumatismos da Medula Espinal/metabolismo , Neuropatia Ciática/metabolismo , Nervo Isquiático/fisiologia , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo , Bulbo Olfatório/metabolismo , Regeneração Nervosa/fisiologia
15.
Eur J Pharmacol ; 956: 175955, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541365

RESUMO

Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Humanos , Células de Schwann , Bainha de Mielina , Axônios , Regeneração Nervosa
16.
Biomed Pharmacother ; 164: 114975, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37267639

RESUMO

Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.


Assuntos
Dor Crônica , Dor Nociceptiva , Humanos , Antagonistas do Receptor Purinérgico P2Y , Analgésicos
17.
Neuropeptides ; 101: 102355, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390743

RESUMO

Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.


Assuntos
Dor Visceral , Humanos , Neurônios , Sistema Nervoso Central , Transdução de Sinais , Trifosfato de Adenosina
18.
Huan Jing Ke Xue ; 44(6): 3408-3417, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309958

RESUMO

To explore the effect of soil fungal community under different planting years in Dendrocalamus brandisii, the soil samples from D. brandisii with different planting years (5, 10, 20, and 40 a) were taken as the research object. The soil fungal community structure, diversity, and its functional groups of different planting years were analyzed using high-throughput sequencing technology and the FUNGuild fungal function prediction tool, and the main soil environmental factors influencing the variations in soil fungal community were examined. The results showed that the dominant fungal communities at the phylum level were Ascomycota, Basidiomycota, Mortierellomycota, and Mucoromycota. The relative abundance of Mortierellomycota decreased and then increased with the increase in planting years, and there was a significant difference among different planting years (P<0.05). The dominant fungal communities at the class level were Sordariomycetes, Agaricomycetes, Eurotiomycetes, and Mortierellomycetes. The relative abundance of Sordariomycetes and Dothideomycetes decreased and then increased with the increase in planting years, and there were significant differences among different planting years (P<0.01). The Richness index and Shannon index of soil fungi increased and then decreased with the increase in planting years, and the Richness index and Shannon index in 10 a were significantly higher than those of other planting years. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) showed that there were significant differences in soil fungal community structure with different planting years. The functional prediction with FUNGuild showed that the main functional trophic types of soil fungi in D. brandisii were pathotroph, symbiotroph, and saprotroph, and the most dominant functional group was endophyte-litter saprotroph-soil saprotroph-undefined saprotroph. The relative abundance of endophytes gradually increased with the increase in planting years. Correlation analysis showed that pH, total potassium (TK), and nitrate nitrogen (NO-3-N) were the main soil environmental factors affecting the change in fungal community. In summary, the planting year of D. brandisii has changed soil environmental factors and has thus changed the structure, diversity, and functional groups of soil fungal communities.


Assuntos
Micobioma , Endófitos , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos , Solo
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 264-272, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37157074

RESUMO

Objective To investigate the cardiac structural and functional characteristics in the patients with heart failure with preserved ejection fraction (HFpEF) and type 2 diabetes mellitus (T2DM),and predict the factors influencing the characteristics. Methods A total of 783 HFpEF patients diagnosed in the Department of Geriatric Cardiology,the First Hospital of Lanzhou University from April 2009 to December 2020 were enrolled in this study.Echocardiography and tissue Doppler technique were employed to evaluate cardiac structure and function.According to the occurrence of T2DM,the patients were assigned into a HFpEF+T2DM group (n=332) and a HFpEF group (n=451).Propensity score matching (PSM)(in a 1∶1 ratio) was adopted to minimize confounding effect.According to urinary albumin excretion rate (UAER),the HFpEF+T2DM group was further divided into three subgroups with UAER<20 µg/min,of 20-200 µg/min,and>200 µg/min,respectively.The comorbidities,symptoms and signs,and cardiac structure and function were compared among the groups to clarify the features of diabetes related HFpEF.Multivariate linear regression was conducted to probe the relationship of systolic blood pressure,blood glucose,glycosylated hemoglobin,and UARE with cardiac structural and functional impairment. Results The HFpEF+T2DM group had higher prevalence of hypertension (P=0.001) and coronary heart disease (P=0.036),younger age (P=0.020),and larger body mass index (P=0.005) than the HFpEF group,with the median diabetic course of 10 (3,17) years.After PSM,the prevalence of hypertension and coronary heart disease,body mass index,and age had no significant differences between the two groups(all P>0.05).In addition,the HFpEF+T2DM group had higher interventricular septal thickness (P=0.015),left ventricular posterior wall thickness (P=0.040),and left ventricular mass (P=0.012) and lower early diastole velocity of mitral annular septum (P=0.030) and lateral wall (P=0.011) than the HFpEF group.Compared with the HFpEF group,the HFpEF+T2DM group showed increased ratio of early diastolic mitral filling velocity to early diastolic mitral annular velocity (E/e') (P=0.036).Glycosylated hemoglobin was correlated with left ventricular mass (P=0.011),and the natural logarithm of UAER with interventricular septal thickness (P=0.004),left ventricular posterior wall thickness (P=0.006),left ventricular mass (P<0.001),and E/e' ratio (P=0.049). Conclusion The patients with both T2DM and HFpEF have thicker left ventricular wall,larger left ventricular mass,more advanced left ventricular remodeling,severer impaired left ventricular diastolic function,and higher left ventricular filling pressure than the HFpEF patients without T2DM.Elevated blood glucose and diabetic microvascular diseases might play a role in the development of the detrimental structural and functional changes of the heart.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Hipertensão , Humanos , Idoso , Insuficiência Cardíaca/diagnóstico , Volume Sistólico , Hemoglobinas Glicadas , Glicemia , Pontuação de Propensão , Função Ventricular Esquerda
20.
Front Mol Neurosci ; 16: 1121877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152436

RESUMO

Introduction: With the advent of trio-based whole-exome sequencing, the identification of epilepsy candidate genes has become easier, resulting in a large number of potential genes that need to be validated in a whole-organism context. However, conducting animal experiments systematically and efficiently remains a challenge due to their laborious and time-consuming nature. This study aims to develop optimized strategies for validating epilepsy candidate genes using the Drosophila model. Methods: This study incorporate behavior, morphology, and electrophysiology for genetic manipulation and phenotypic examination. We utilized the Gal4/UAS system in combination with RNAi techniques to generate loss-of-function models. We performed a range of behavioral tests, including two previously unreported seizure phenotypes, to evaluate the seizure behavior of mutant and wild-type flies. We used Gal4/UAS-mGFP flies to observe the morphological alterations in the brain under a confocal microscope. We also implemented patch-clamp recordings, including a novel electrophysiological method for studying synapse function and improved methods for recording action potential currents and spontaneous EPSCs on targeted neurons. Results: We applied different techniques or methods mentioned above to investigate four epilepsy-associated genes, namely Tango14, Klp3A, Cac, and Sbf, based on their genotype-phenotype correlation. Our findings showcase the feasibility and efficiency of our screening system for confirming epilepsy candidate genes in the Drosophila model. Discussion: This efficient screening system holds the potential to significantly accelerate and optimize the process of identifying epilepsy candidate genes, particularly in conjunction with trio-based whole-exome sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...